Anomaly Ranking as Supervised Bipartite Ranking
نویسندگان
چکیده
The Mass Volume (MV) curve is a visual tool to evaluate the performance of a scoring function with regard to its capacity to rank data in the same order as the underlying density function. Anomaly ranking refers to the unsupervised learning task which consists in building a scoring function, based on unlabeled data, with a MV curve as low as possible at any point. In this paper, it is proved that, in the case where the data generating probability distribution has compact support, anomaly ranking is equivalent to (supervised) bipartite ranking, where the goal is to discriminate between the underlying probability distribution and the uniform distribution with same support. In this situation, the MV curve can be then seen as a simple transform of the corresponding ROC curve. Exploiting this view, we then show how to use bipartite ranking algorithms, possibly combined with random sampling, to solve the MV curve minimization problem. Numerical experiments based on a variety of bipartite ranking algorithms well-documented in the literature are displayed in order to illustrate the relevance of our approach.
منابع مشابه
Semi-supervised bipartite ranking with the normalized Rayleigh coefficient
We propose a new algorithm for semi-supervised learning in the bipartite ranking framework. It is based on the maximization of a so-called normalized Rayleigh coefficient, which differs from the usual Rayleigh coefficient of Fisher’s linear discriminant in that the actual covariance matrices are used instead of the scatter matrices. We show that if the class conditional distributions are Gaussi...
متن کاملUniform Convergence, Stability and Learnability for Ranking Problems
Most studies were devoted to the design of efficient algorithms and the evaluation and application on diverse ranking problems, whereas few work has been paid to the theoretical studies on ranking learnability. In this paper, we study the relation between uniform convergence, stability and learnability of ranking. In contrast to supervised learning where the learnability is equivalent to unifor...
متن کاملSupervised and Extended Restart in Random Walks for Ranking and Link Prediction in Networks
Given a real-world graph, how can we measure relevance scores for ranking and link prediction? Random walk with restart (RWR) provides an excellent measure for this and has been applied to various applications such as friend recommendation, community detection, anomaly detection, etc. However, RWR suffers from two problems: 1) using the same restart probability for all the nodes limits the expr...
متن کاملActive Sampling of Pairs and Points for Large-scale Linear Bipartite Ranking
Bipartite ranking is a fundamental ranking problem that learns to order relevant instances ahead of irrelevant ones. One major approach for bipartite ranking, called the pair-wise approach, tackles an equivalent binary classification problem of whether one instance out of a pair of instances should be ranked higher than the other. Nevertheless, the number of instance pairs constructed from the ...
متن کاملConfidence-Weighted Bipartite Ranking
Bipartite ranking is a fundamental machine learning and data mining problem. It commonly concerns the maximization of the AUC metric. Recently, a number of studies have proposed online bipartite ranking algorithms to learn from massive streams of class-imbalanced data. These methods suggest both linear and kernel-based bipartite ranking algorithms based on first and second-order online learning...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014